
ACT

By

ROBERT V. ST. DENIS
B.S. (Northeastern University) 2013

THESIS

Submitted in partial satisfaction of the requirements for the degree of

MASTER OF SCIENCE

in

Electrical & Computer Engineering

in the

OFFICE OF GRADUATE STUDIES

of the

UNIVERSITY OF CALIFORNIA

DAVIS

Approved:

Professor Venkatesh Akella, Chair

Professor Rajeevan Amirtharajah

Adjunct Assistant Professor Christopher Nitta

Professor Matthew Farrens

Committee in Charge
2017

–i–



Contents

Abstract iii

List of Figures vi

List of Tables vii

List of Acronyms viii

1 Introduction 1

2 Cell Design 6

3 Memory Design, Pipelining, & Energy Estimation 15
3.1 SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 ACT Pipelining & Energy Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 Results 24

5 Conclusion & Future Work 35

References 36

–v–



List of Figures

1.1 A generalized linear asynchronous QDI pipeline. . . . . . . . . . . . . . . . . . . . 2
1.2 Detailed implementation of an e1of4 PCHB . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Detailed implementation of an e1of4 PCFB. . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Detailed implementation of the output rails for an e1of4 Vertical XOR . . . . . . . 8
2.2 Detailed implementation of the output rails for an e1ofN Compressor. . . . . . . . 8
2.3 Davies, Lines, & Southworth QDI State-bit Template. . . . . . . . . . . . . . . . . 9
2.4 Statebit pulldowns and state validity for use in a 2-bit QDI counter. . . . . . . . . 11
2.5 Detailed implementation of an e1of4 4-way PCFB Split. . . . . . . . . . . . . . . . 12
2.6 Detailed implementation of an e1of4 2-way interleaved PCFB Split. . . . . . . . . 12
2.7 High level view of a pulldown netlist generator. . . . . . . . . . . . . . . . . . . . 13
2.8 Detailed implementation of carry-sum rails in a 2-stage CSA. . . . . . . . . . . . . 14
2.9 Detailed implementation of carry-sum computation in a single-stage CSA. . . . . . 14

3.1 Detailed Implementation of the 6T SRAM Datapath Circuitry. . . . . . . . . . . . 17
3.2 Two Broadcast / Copy Trees communicating with a single Completed Tree. . . . . 22
3.3 A Pipelined Split-Merge Tree utilized during SRAM access. . . . . . . . . . . . . . 22

4.1 1024 x 16 bit Pipelined SRAM Results . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2 SRAM Read and Write Throughput vs VDD for a pipelined 1024 x 16 bit SRAM

bank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.3 e1of4 PCFB 7nm TT-Corner Results . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.4 e1of4 & e1of2 PCHB 7nm TT-Corner Results . . . . . . . . . . . . . . . . . . . . . 29
4.5 e1of4 & e1of2 WCHB 7nm TT-Corner Results . . . . . . . . . . . . . . . . . . . . 30
4.6 Leakage Current vs VDD for for various bank sizes. . . . . . . . . . . . . . . . . . . 31
4.7 Read and Write Energy per Cycle for various bank sizes . . . . . . . . . . . . . . . 32
4.8 Read and Write Eτ for various bank sizes . . . . . . . . . . . . . . . . . . . . . . . 33
4.9 Read and Write Eτ2 for various bank sizes . . . . . . . . . . . . . . . . . . . . . . 34

–vi–



List of Tables

2.1 Vertical XOR Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Vertical XOR 1of4 Pulldown Computation . . . . . . . . . . . . . . . . . . . . . . 7
2.3 2-Bit Counter State & Pulldown Rail Table . . . . . . . . . . . . . . . . . . . . . . 10

–vii–



List of Acronyms

NTV Near Threshold Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
NTC Near Threshold Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
VLSI Very Large Scale Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
IC Integrated Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
FIFO First-In First-Out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
I/O Input/Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
e1of2 Enable + 1 of 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
e1of4 Enable + 1 of 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
PCHB Pre-Charged Half Buffer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
PCFB Pre-Charged Full Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
MSB Most Significant Bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
LSB Least Significant Bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
FSM Finite State Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
FA Full Adder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
CSA Carry-Save Adder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
STFB Single-Track Full Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
PVT Process, Voltage & Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
SRAM Static Random Access Memory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
CDP Cached Dual-Ported. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
BIST Built-In Self Test. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
MRU Most Recently Used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
ACT Asynchronous Cache Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
SECDED Single-Error-Correcting Double-Error-Detecting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

–viii–



1

Introduction

“There’s nothing remarkable about it. All one has to do is hit the right keys at the right

time and the instrument plays itself.”

– J.S. Bach

Although a myriad of highly-developed techniques exist in the field of Very Large Scale

Integration (VLSI) Integrated Circuit (IC) design, two dominant paradigms are encountered uni-

versally throughout: synchronous systems, which leverage a shared clock to perform sequencing,

and asynchronous systems, which do not [4][5][6]. Of the various forms of asynchronous design - all

of which can be categorized in their use of timing assumptions to implement sequencing - the most

robust form is that of delay-insensitive (DI) design [1][7]. In a fully DI system, the correct function-

ality of the circuitry remains independent of wire and gate delays, as by definition, all wires and

composite gates can assume arbitrary and unbounded, yet finite and positive delays while main-

taining error-free operation [7][4]. Despite this attractive quality however, [8] has formally proven

that the set of circuits adhering to these requirements are not only limited in practicality, but are

also Turing incomplete, inevitably giving rise to the notion of Quasi Delay insensitivity (QDI) [7].

Much like DI circuits, QDI circuits uphold identical delay requirements, with the single exception

of the isochronic fork timing assumption [9], which requires the delay on one branch of a forked

wire to be less than the delay through a transitional/gate sequence on the other end of the fork

[10].

To place both ideologies in terms of analogy, designing a purely DI system would be
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equivalent to writing a song in a major scale, without using either of the scale’s half-steps or notes

beyond those remaining: while seemingly conceivable at first, one quickly realizes the practicality is

ineffably limited and the scale remains incomplete. The isochronic fork is analogous to the scale’s

half steps, as additional timing assumptions are to leveraging notes beyond the scale’s scope - both

are essential to the musical system and inherent full-bodied creations, but improper placement

or overuse of either results in dissonance and perceived noise. The analogy is further intended

to be self-encompassing, as synchronous systems also lend themselves to rhythmic & harmonious

metaphors.

In contrast to the synchronous paradigm however, which requires worst-case timing guard-

bands, asynchronous QDI design delivers average-case performance to always operate as best it can

for any set of inputs and actual case circuit parameters, rather than remaining limited to a constraint

imposed by a shared worst-case clock or matched delay. As a result, this independence of shared

global information produces increased performance and highly modular interfaces, in contrast to

circuits requiring complex control logic often found in synchronous systems [5]. Furthermore, as

each circuit can be customized to perform a specific function, the implementation style naturally

lends itself to highly pipelined & multi-faceted designs along with omnipresent concurrency[11].

L

Le

R

Re

L

Le

R

Re

L

Le

R

Re

L

Le

R

Re

Figure 2.1: A generalized linear asynchronous QDI pipeline.
The request is encoded as a 1 of N signal, while the enables represent inverted acknowledges.

A linear pipeline is depicted in Figure 2.1 and can be described as a sequence of consec-

utively connected cells, with the right outputs of one cell connected to the left inputs of the next.

As tokens are placed into the foremost left input, they sequentially propagate from left to right in

a First-In First-Out (FIFO) fashion, under the condition that the next successive cell is vacantly

available to receive the token; otherwise the propagation is stalled until the token can be received

[11].
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As there is no globally shared information between the circuits, cells require the use of

enabling and acknowledgement for communication between one another, in order to convey the

receiving availability as well as successful token transmission. This use of handshaking between

cells allows the relevant sending & receiving state to be encoded within the token’s propagation

[12], giving rise to the notion of “self-timed” [5] circuits.

As each circuit must be available to receive a token prior to successful transmission, the

concept of “slack” must be introduced. The token capacity of a buffer is defined as the static

slack - buffers than can simultaneously send a and receive a token are said to have a static slack

of 1, while those that can only send or receive at any given time are defined as having a static

slack of 1-half, consequently defining the nomenclature of “half -buffers” and “full-buffers” [11].

Furthermore, while the majority of asynchronous literature focuses on depicting dual-rail or Enable

+ 1 of 2 (e1of2) implementations because they are the easiest to understand and most commonly

utilized, asynchronous QDI prefers the use of Enable + 1 of 4 (e1of4) DI codes in order to mitigate

the transitional energy penalty of the four-phase handshake [13]. Because an e1of4 code encodes 2

bits, the number of transitions is effectively halved compared to that of using e1of2 codes, as one

would need two e1of2 codes to encode 2 bits.

en

Re

L[3] L[2] L[1] L[0]

Re

en

Re

en
Re

en

L[3]
L[2]
L[1]
L[0]

R[0]

R[1]

R[2]

R[3]

r[1]

r[0]

r[2]

r[3]

lv

rvrv

RST

RST

Resettable C-Element

Cgl Cdr CwCgen Cgre

Gate Capacitances Drain + Wire Capacitances

Le

Staticizer Capacitances

Csl Csr

en

Pre-charged Half Buffer
e1of4

Figure 1.2: Detailed implementation of an e1of4 PCHB
Critical parasitic capacitances have also been labeled for clarity as follows: gate capacitances of
the left input, internal and right enables; drain capacitances attached to r, capacitances of the

wires, and the capacitances internal to cross-coupled staticizers, left and right [14].
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To visualize the contents of one type of half buffer, consider the e1of4 Pre-Charged Half

Buffer (PCHB) shown in Figure 2.2. The circuit’s e1of4 left Input/Output (I/O) is denoted as

L[3:0] & Le, while the e1of4 right I/O is denoted as R[3:0] & Re. Signals beginning with capital

letters are cell I/O signals, while lower case letters distinguish signals internal to the cell. Before the

circuit can be of use, it must be placed into a valid state [15] by asserting the active low reset signal

RST . When asserted, the circuit’s internal-enable en and left enable Le are brought low allowing

the output rails r[3 : 0] to pre-charge to a logic ’1’, consequently setting the inverted outputs R[3:0]

to logic ’0’. In addition, it’s assumed that the circuit attached to the cell’s output brings its left

enable low, as the cell’s right enable Re must also hold the value of logic ’0’ for the pre-charge to

take place [16]. Once the output rails have sufficiently charged, the right valid signal rv holds logic

’0’, while the inverted left and right valid signals rv and lv contain logic ’1’. After the reset has

succeeded, RST is released and set to the default value of ’1’ allowing the output of the C-element

to return to the cell’s idle state of ’1’. During operation, 1of4 data arrives at the input L to pull

one of the four output rails r low, while simultaneously causing the output of the NOR gate lv to

cease firing. After r has fallen, rv fires, rv ceases to fire, and Le & en are pulled low to acknowledge

Left input data. In parallel, the successive pipelined block acknowledges the received propagating

data, thus bringing Re low, consequently allowing r to pre-charge once again, returning the PCHB

to it’s idle state for the process to repeat.

Figure 2.3 depicts an e1of4 Pre-Charged Full Buffer (PCFB). In order to simultaneously

transmit while receiving, the full buffer requires an extra state-holding element, implemented using

the asymmetric C-element. All pseudo-static implementations of C-elements and pre-charged, non-

complementary outputs require the use of a cross-coupled staticizers, in order to prevent their pre-

charges from leaking away when held for extended durations of time; [15] provides a comprehensive

overview of methods for implementing staticized buffers with reset capability. This use of the extra

state holding element allows the left and right handshakes to reset in parallel [7].

In addition to the static slack, metrics of forward latency, throughput, cycle time, dynamic

slack, and energy per cycle are useful for quantifying the characteristics of asynchronous pipelines.

The forward latency is defined as the time it takes a given token to travel the full length of the

pipeline, while the throughput is defined as the rate a given pipeline produces a result. The cycle

time is the inverse of the throughput, and the energy per cycle is the integral of the pipeline’s

4
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Figure 1.3: Detailed implementation of an e1of4 PCFB.
The implementation can be further improved by altering the internal and left enable

computations.

power trace, beginning from the production of one result and ending with production of the next.

Furthermore, the static slack defines the maximum token capacity of a given pipeline, while the

dynamic slack defines the number of tokens present in the pipeline in order to operate at peak

throughput.
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2

Cell Design

“How can I help but see what is in front of my eyes? Two and two are four.”

“Sometimes, Winston. Sometimes they are five. Sometimes they are three.

Sometimes they are all of them at once. You must try harder.”

– George Orwell, 1984

Similar to many concepts in digital design, the first step to designing a cell by hand is

simply to make a truth table. Table 2.1 provides the logic for implementing a 2-bit vertical XOR.

In summary, the function performs the following: XOR the Most Significant Bit (MSB) of A with

the MSB of B, XOR the Least Significant Bit (LSB) of A with the LSB of B, and concatenate the

result. For example, in binary: A=10, B=11; XOR(A[1], B[1]) = 0; XOR(A[0], B[0]) = 1; Result

= 01; Because QDI prefers the use of e1of4 codes however, the table is of maximal use after it has

been re-written using quaternary logic, therefore 2.1 provides both binary and quaternary systems.

From the quaternary logic table, each result is then grouped together to form the pulldown logic,

which is shown in Table 2.2.

From the pulldown table, each pair of inputs is assigned a pair of NMOS transistors stacked

in series to create the pulldown logic. As there are 16 total combinations and each combination

has 2 inputs, the result initially requires 16 transistors stacked across 2 layers. However, because

each combinational input of A and B is unique, either A or B can be shared in the second layer

of pulldowns for further area savings. Figure 2.1 provides a completed set of output rails with

A[3:0] chosen as the shared set of inputs. Array notation is used to maintain an efficient use

6



Table 2.1: Vertical XOR Truth Table

Binary Logic 1of4 Logic

B A Result B A Result

0 0 0 0 0 0 0 0 0
0 0 0 1 0 1 0 1 1
0 0 1 0 1 0 0 2 2
0 0 1 1 1 1 0 3 3
0 1 0 0 0 1 1 0 1
0 1 0 1 0 0 1 1 0
0 1 1 0 1 1 1 2 3
0 1 1 1 1 0 1 3 2
1 0 0 0 1 0 2 0 2
1 0 0 1 1 1 2 1 3
1 0 1 0 0 0 2 2 0
1 0 1 1 0 1 2 3 1
1 1 0 0 1 1 3 0 3
1 1 0 1 1 0 3 1 2
1 1 1 0 0 1 3 2 1
1 1 1 1 0 0 3 3 0

Table 2.2: Vertical XOR 1of4 Pulldown Computation

0 Rail 1 Rail 2 Rail 3 Rail

B A B A B A B A

0 0 0 1 0 2 0 3
1 1 1 0 1 3 1 2
2 2 2 3 2 0 2 1
3 3 3 2 3 1 3 0

of drafting space; [17] provides a comprehensive overview of schematic array notation under the

connectivity and naming conventions guide. When implementing the cell, the left valid computation

can be performed with two 4-input NOR gates fed into an inverted C-element, while the right valid

computation is implemented using a 4-input NAND gate attached to r[3 : 0]. Depending on whether

a half-buffer or full-buffer implementation is preferred, one can follow the usage of the inverter and

C-elements provided in Figures 1.2 or 1.3 to complete the cell.

Figure 2.2 depicts the pulldown rails for use in a 3:2 compressor. The compressor sums

the number of 1’s present in the 1ofN codes’ binary representation. The process for developing

the pulldown rails follows the same procedure as the vertical XOR cell. Dissimilar to binary logic

however, this compressor is not synonymous with a 3:2 Full Adder (FA), as an e1ofN adder would

sum the values represented by the 1ofN codes, rather than the number of 1’s present in the binary

representation. Therefore in addition to requiring a unique set of 1of4 pulldown rails, an e1ofN

7
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e1of4 Vertical XOR 
Pulldown Rails

Figure 2.1: Detailed implementation of the output rails for an e1of4 Vertical XOR
Note that B[3:0] inherits a higher input capacitance than A[3:0].

e1ofN 3:2 *Compressor
Pulldown Rails

A[2:1]
[1:0] [1:0]

A[3]A[0]

B[0] B[1]

en

Re

en

Re

en

Re

r[0]
r[1]
r[2]
r[3]

Figure 2.2: Detailed implementation of the output rails for an e1ofN Compressor.
In this case, compressor is used to mean a device that sums the number of 1’s present in the

1ofN’s binary representation.

adder also effectively demands a unique set of e1of2 pulldown rails to represent the maximum value

of 3+1 = 4.
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In addition to methods for implementing logical functions, another important aspect of

digital design is the implementation of Finite State Machines (FSM)’s. FSM’s maintain a given

state and only change after all expected inputs have become available [7]. One method for doing

so would be to build two separate sets of logic rails - one set provides the next-state logic while the

other provides output logic. The output of the next state logic is then buffered and fed as an input

into the output logic along with the main inputs to the FSM. The simplicity of the method enables

synchronous techniques to be leveraged for generating the boolean state and next state logic, as

the synchronous data flops can be easily swapped out for pipelined buffers [7]. However, as the

state machine becomes large, the area efficiency of the technique begins to depreciate, inevitably

motivating the use of state-holding circuits, rather than maintaining the current state by looping

the next-state logic back via pipelined buffers. [16] & [7] provide one method for implementing

QDI state-bits, while Figure 2.3 depicts a version with increased modularity.

DLS QDI Statebit

En1

X1
X0

X0

En0

X0
X1

X1
RST

RST

RST

Figure 2.3: Davies, Lines, & Southworth QDI State-bit Template.
An alternate implementation of [16][7].

During the reset, both enable inputs are ’0’, and X0 is pulled high while X1 is pulled low,

effectively setting the default state of the bit to ’0’. Ideally, this would allow both X0 and X1 to

pre-charge, but because X0 is initialized to logic ’1’, X1 necessitates the use of an extra transistor

to pre-charge during the circuit reset. Alternatively, the three reset transistors can be mirrored to

set the default state to ’1’ instead of defaulting to ’0’. Once the reset has completed, X0 & X1

can approached similarly to a set of pre-charged output rails: each time the required set of inputs

becomes valid, either X0 or X1 will be pulled low to indicate a valid transition has occurred, even

if the transition does not require the currently held state to change. The transition on either of the
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rails is then detected using a state-validity circuit and subsequently combined with the other valid

signals according to a half-buffer or full-buffer implementation. After the valid signals have been

aggregated and the internal enable is lowered, the state-bit will subsequently change states if the

corresponding X rail has lowered. For example, if the state-bit holds a ’0’, X0 is initialized to ’1’.

When X1 is pulled down and the enable is lowered, X1 will be pre-charged to ’1’ and pull X0 down

to ’0’ subsequently allowing X1 to pre-charge to the default state of ’1’. If X0 had been pulled

down instead of X1, when the enable is lowered the state is maintained and X0 simply pre-charges

back to the original state.

Table 2.3: 2-Bit Counter State & Pulldown Rail Table

Counter State Table State[1] - 1 Rail State[1] - 0 Rail

State[1:0] *State[1:0] 0 1 0 0
0 0 0 1 1 0 1 1
0 1 1 0 State[0] - 1 Rail State[0] - 0 Rail
1 0 1 1 0 0 0 1
1 1 0 0 1 0 1 1

Table 2 provides a state table and pulldown logic for each of the state-bit rails for use in

a 2-bit QDI counter, while Figure 2.4 provides the implementation of the pulldown rails and state-

validity. Also note the use of 2-dimensional array notation that follows the form S[statebit][rail].

The state-bits could further be combined into a signal array but have been drawn separately for

clarity. One method for detecting the validity of the state-bit transitions would be to use two

2-input NAND gates fed into a C-element. However, [5] provides a superior method of detecting

the validity, which is also used in the weak-conditioned full adder [11][18].
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Figure 2.4: Statebit pulldowns and state validity for use in a 2-bit QDI counter.
The state validity performs the equivalent of 2 NAND gates fed into a C-element [5][11][18].

Although the state-bit’s separate enables remain tied together in the counter, their sep-

aration is of use in specific instances. First, consider the 4-way PCFB e1of4 Split in Figure 2.5.

The split conditionally writes an e1of4 code onto one of four channels, annotated using 2D array

notation as R[channel][rail]. Each of the 4-channels is provided with it’s own set of pulldowns,

only one of which will evaluate depending on the select line that is asserted. Regardless of the

channel the data is written to however, S[3:0] and L[3:0] are acknowledged with a single wire, as

they are both always acknowledged unconditionally. Next, consider the 2-way interleaved Split

depicted in Figure 2.6. The output of a single state-bit is used to replace the S[1:0] inputs. When

left data arrives, the channel currently selected by the state-bit receives the data, the opposite state

rail is pulled low, and the corresponding se is lowered allowing the state-bit to flip. As se cannot be

raised again until the bit has successfully flipped, it eliminates the need for an additional state-valid

computation. The additional reset transistor is required to ensure se[0] successfully pre-charges.
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Figure 2.5: Detailed implementation of an e1of4 4-way PCFB Split.
An extension of [19].
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Figure 2.6: Detailed implementation of an e1of4 2-way interleaved PCFB Split.
Extensions of [16][19] using a single DLS QDI state-bit.
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Figure 2.7: High level view of a pulldown netlist generator.

In all cases encountered thus far, transistors in the pulldown logic have been drawn using

wired connections. However in some cases, connections cannot always be drawn easily. First,

consider the e1ofN Carry-Save Adder (CSA) carry-sum rails depicted in Figure 2.8. The carry save

adder adds the value of two e1of4 codes + an e1of2 code. Carry-save addition is commonly used in

high-performance Booth multiplication to quickly sum the results of partial product computations -

[20] leverages an alternate Single-Track Full Buffer (STFB) implementation. As the maximum value

produced by the CSA is 3+3+1=7, it necessitates the use of an additional set of e1of2 carry-out

rails (not shown). In Figure 2.8, the carry-sum operation has been broken into 2-sages, and as such,

the connections can be drawn in a similar fashion to the previous methods. The 2-stage CSA may

be of use when the number of transistors in the pulldown logic is limited due to NTV operation, as

[2] does not utilize implementations with more than 4 NMOS transistors in series. Next, consider

the single-stage CSA shown in 2.9. In order to effectively illustrate the connections, a set of patched

nets is used. Each of the nets represents 4 wired connections. Finally, consider the method for

pulldown netlist generation shown in Figure 2.7. Although an automated tool for constructing a

functional pulldown netlist is beyond the scope of this thesis, once cell implementation has been

thoroughly understood, the process of automating logic for standard cell generation is the next

step in constructing a unique toolset (if alternative methods are unavailable). As a result, one may

choose to develop a program to automate pulldown netlist generation, rather than designing cells

by hand.

While this chapter has aimed to educate the reader on techniques for designing e1ofN

cells, there are still many additional topics that remain uncovered, such as, pipelined arbitration,

pipelined completion, weak-conditioned logic, reduced stack pre-charged logic, single-track full

13
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Figure 2.8: Detailed implementation of carry-sum rails in a 2-stage CSA.
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Figure 2.9: Detailed implementation of carry-sum computation in a single-stage CSA.

buffered logic, and sense-amp half buffered logic[21]. [7] is an excellent resource, as it provides a

exhaustive overview of nearly all industrially-utilized asynchronous techniques, while [16] and [19]

provide comprehensive implementation examples, in addition to other works output by pioneers in

the field of asynchronous design.
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3

Memory Design, Pipelining, & Energy

Estimation

Salvador Dali, Disintegration of the Persistence of Memory

One element common to all computational systems is memory. In the majority of modern

CPU’s, memory exists as a hierarchy composed of several layers, with each layer increasing in size

and consequently decreasing in speed [5]. This cache hierarchy occupies a significant fraction of the

overall die size and thus may consume up to 50% of the relative dynamic power [22][23]. Moreover,

as technology scaling nears the end of initial ascent to cruising altitude at the fundamental atomic

limit, and improvements gained as a result of Moore’s law draw to a close, alternate methods for

scaling supply voltage must be sought out.
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Figure 3.3: A Pipelined Split-Merge Tree utilized during SRAM access.

In order to to create wide SRAM subarrays, SRAM subarrays, tiles of width 12 and 16

bits are stacked vertically. Using these two widths, any width of 4 bits may be supported, except

for widths of 4, 8 and 20. Commercial asynchronous systems have used this method in the past for

purposes of minimizing the number of physical VLSI templates and the effective time to market
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Figure 4.3: e1of4 PCFB 7nm TT-Corner Results
Eτ and Eτ2 are also shown for the same buffer, with all transistors sized 3x larger
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Figure 4.4: e1of4 & e1of2 PCHB 7nm TT-Corner Results

29



0 100 200 300 400 500 600 700 800 900
VDD [mV ]

0

1

2

3

4

5

6

7

8

9

10
P
ea
k
T
h
ro
u
gh

p
u
t
[G

H
z]

Peak-Throughput vs. Supply Voltage, TT-Corner

/C = -25
/C = 0
/C = 25
/C = 50
/C = 75
/C = 100
/C = 125

(a) Peak Throughput vs VDD, e1of4

0 2 4 6 8 10 12 14 16 18 20
= [ns]

0

1

2

3

4

5

6

E
n
er

g
y

[f
J
=c

y
cl

e]

Energy vs. Cycle Time, TT-Corner

/C = -25
/C = 0
/C = 25
/C = 50
/C = 75
/C = 100
/C = 125

(b) Energy vs Cycle Time, e1of4

450 500 550 600 650 700 750 800 850 900 950
VDD [mV ]

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

E
=

[1
0!

2
4

J
#

s]

E= vs. Supply Voltage, TT-Corner

/C = -25
/C = 0
/C = 25
/C = 50
/C = 75
/C = 100
/C = 125

(c) Eτ vs VDD, e1of4

450 500 550 600 650 700 750 800 850 900 950
VDD [mV ]

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

E
=

2
[1

0!
3
3

J
#

s2
]

E= 2 vs. Supply Voltage, TT-Corner

/C = -25
/C = 0
/C = 25
/C = 50
/C = 75
/C = 100
/C = 125

(d) Eτ2 vs VDD, e1of4

0 100 200 300 400 500 600 700 800 900
VDD [mV ]

0

2

4

6

8

10

12

14

P
ea
k
T
h
ro
u
gh

p
u
t
[G

H
z]

Peak-Throughput vs. Supply Voltage, TT-Corner

/C = -25
/C = 0
/C = 25
/C = 50
/C = 75
/C = 100
/C = 125

(e) Peak Throughput vs VDD, e1of2

0 2 4 6 8 10 12 14 16 18 20
= [ns]

0

0.5

1

1.5

2

2.5

3

3.5

4

E
n
er

g
y

[f
J
=c

y
cl

e]

Energy vs. Cycle Time, TT-Corner

/C = -25
/C = 0
/C = 25
/C = 50
/C = 75
/C = 100
/C = 125

(f) Energy vs Cycle Time, e1of2

450 500 550 600 650 700 750 800 850 900 950
VDD [mV ]

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

E
=

[1
0!

2
4

J
#

s]

E= vs. Supply Voltage, TT-Corner

/C = -25
/C = 0
/C = 25
/C = 50
/C = 75
/C = 100
/C = 125

(g) Eτ vs VDD, e1of2

450 500 550 600 650 700 750 800 850 900 950
VDD [mV ]

0

0.05

0.1

0.15

0.2

0.25

E
=

2
[1

0!
3
3

J
#

s2
]

E= 2 vs. Supply Voltage, TT-Corner

/C = -25
/C = 0
/C = 25
/C = 50
/C = 75
/C = 100
/C = 125

(h) Eτ2 vs VDD, e1of2

Figure 4.5: e1of4 & e1of2 WCHB 7nm TT-Corner Results
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